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Executive Summary 

Statistical intervals should be reported when assessing a system’s performance within its operational 

space. This best practice demonstrates how to use different types of statistical intervals in conjunction 

with design of experiments (DOE) and regression analysis to best tackle the principal questions behind 

testing. Using such an approach adds greater rigor in the assessment of a system, extracts more 

information from limited resources, and avoids the much criticized folly of reporting a single average 

across all test conditions. 

Keywords: Confidence, Prediction, Tolerance, Intervals, Regression, Analysis, Design of Experiments 

Introduction 

The Director, Operational Test and Evaluation (DOT&E) FY 2012 Annual Report criticized the 

practice/folly of reporting a single average of a system’s performance across all test conditions (Gilmore, 

2012). The same report advocated the use of advanced statistical methods in conjunction with test 

designs developed using design of experiments (DOE). Statistical methods such as regression analysis 

and statistical intervals combined with DOE allow programs to assess a system’s performance with 

greater rigor, while extracting more information from limited resources. The Scientific Test and Analysis 

Techniques Center of Excellence (STAT COE) has observed a lot of confusion in the test and evaluation 

(T&E) community regarding the interpretation and application of some commonly used statistical 

intervals. In Department of Defense (DoD) testing, we often make an assessment about a system’s 

performance based on limited sample data. Due to this limitation, there is always some level of 

uncertainty in the system performance estimates. A way to quantify the uncertainty of the estimate is 

by constructing a statistical interval. In this best practice, we provide clarification on how to use three 

commonly calculated intervals in DoD testing: confidence intervals, prediction intervals, and tolerance 

intervals. For each interval, we provide a layman’s definition as well as demonstrate its use on a Missile 

Warning System case study in which a designed experiment and regression analysis are employed. This 

best practice will not go into details regarding the mathematics and formulation of each statistical 

interval. The formulation of the intervals varies based on test methodology used and parameter of 

interest. Most statistical software will do these calculations by default, so there is no need to go into 

details; however, it is important to understand the underlying assumptions behind each statistical 

interval. There are many good sources available if you are interested in learning more about the 

mathematical details of these intervals (see, for example, Montgomery [2017] or Anderson-Cook 

[2009]). 
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Background 

Missile Warning System (MWS) Case Study 

To illustrate how to use these statistical intervals, we’ll use a generic example of a designed experiment 

applied to assess a Missile Warning System (MWS) as shown in Figure 1. An MWS works in conjunction 

with a counter measure (CM) tracker in order to defeat guided seeker threats to aircrafts. The MWS acts 

as a cueing system by detecting, declaring, and eventually handing off a potential threat to the CM 

tracker. The ultimate goal of the analysis is to assess various performance measures and help make a 

determination on the suitability of the MWS. One such performance measure is “time to handoff,” 

which has a threshold requirement to be under 500ms. Note that all data presented in this best 

practice are notional and used for demonstrative purposes only.  

 
Figure 1: Missile Warning System application (Source: ITT Defense) 

 
MWS handoff capabilities and timelines vary according to threat type, engagement slant range, 
atmospheric conditions, clutter level, and platform flight profile. 
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For simplicity, the designed experiment will only consider one threat type and will vary the following 
factors at a high and low level (+1, -1 in coded units, respectively): 
 

 Altitude 

 Range 

 Aircraft Speed 

 Clutter 
 
The following 24 design (with 6 center points) shown in Table 1 was created and executed for the MWS. 
The performance measure of interest (i.e., response) is time to handoff and is shown in the last column 
in Table 1.  
 

Table 1: 24 design for MWS test 
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Requirement/Problem Statement 

The MWS program wishes to demonstrate that the time to handoff will not exceed 500 ms throughout 

the operational region as defined by the factors and levels. A more statistically precise statement would 

be that the program wants to show, with 95% confidence, that the probability of success is at least 99%. 

That is, 

Pr(𝜇𝑡𝑖𝑚𝑒 < 500ms) ≥ 0.99 

at any point within the design space. Note that 𝜇𝑇𝑖𝑚𝑒 represents the population mean time to handoff. 

Run number 4 (highlighted in red in Table 1) already demonstrates that the MWS can exceed 500ms 

under certain conditions. 

The following regression model was created based on the collected data and can be used to predict time 

to handoff performance (in milliseconds) across the design space: 

Time to handoff = 409.27 + 29.35𝐴 + 38.93𝐵 − 10.09𝐶 + 9.86𝐷 + 20.09𝐴𝐵 − 14.07𝐴𝐷 

The regression model is represented graphically in Figure 2 with aircraft speed and clutter held constant.  

This surface plot clearly shows the relationships between the response (time to handoff) and two of its 

input factors (altitude and range). You see that as range and altitude increase, the MWS takes longer to 

handoff. The model allows for interpolation within the design space, thus allowing for prediction of 

untested scenarios. 

 

Figure 2: 3-D graphical representation of the regression model developed using design of experiments 

for MWS example 
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Statistical Intervals 
For this MWS case study, the parameter of interest is the mean time to handoff. The basic form for a 
statistical interval for the mean is as follows: 

�̅� ± 𝑐(level, n) ∙ 𝑠 

where  

 �̅� is the sample mean 

 𝑠 is the standard error 

 𝑛 is the sample size 

 𝑐(level, n) is a critical value that changes depending on the interval type and a specified 

confidence level. 

Confidence Intervals 

Definition 

A confidence interval (CI) is an estimated range of values constructed using a sample drawn from a 

population so that, if we repeated the sampling method and CI estimation an infinite number of times, 

such intervals would contain the true parameter value the 100(level)% of the time. In layman’s term, a 

confidence interval is a calculated range of values based on sampled data where the true population 

parameter (e.g., mean) likely resides. 

Questions 

Some sample questions that may require the calculation of a confidence interval for the mean: 

 What is the average performance of my system at a specific condition? 

 Is the average performance of the system below/above the specification limits? 
 

Case Study 

Confidence intervals are used in hypothesis testing and statistical inference. For our MWS example, let’s 

say the null and alternate hypothesis are as follows: 

𝐻0: 𝜇𝑡𝑖𝑚𝑒 ≥ 500 

𝐻1: 𝜇𝑡𝑖𝑚𝑒 < 500 

In this case, we are assuming that the system is bad (𝜇𝑡𝑖𝑚𝑒 ≥ 500) and want to find evidence that the 
system is good (𝜇𝑡𝑖𝑚𝑒 < 500). The first step in constructing the interval is to set the confidence level 
(1 − 𝛼), where 𝛼 is the acceptable risk level for making the wrong conclusion that the system is good 
when it is actually bad (i.e., rejecting the null hypothesis when the null hypothesis is actually true). This 
degree of certainty must be specified up front and prior to testing. Based on the MWS problem 
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statement, the confidence level is set to 95% (𝛼 = 0.05). In other words, there is a 5% probability that 
we will say the system is good when in fact it is bad purely by chance.  
 
Table 2 shows the results of the data for the MWS test along with the 95% upper confidence bound for 
each test condition. We can see that the 95% upper confidence bound for runs 4 and 12 exceeds 500ms. 
This suggests that there is evidence to not reject the null hypothesis (i.e. the true mean of the 
population could be over 500ms when altitude and range are both at the high level and aircraft speed is 
at the low level). 

 
Table 2: Calculated upper confidence intervals for MWS designed experiment. 

 

 

Things to note 

Important things to note and remember about CIs on the mean: 

 It does not tell you the true population mean. 
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The CI tells you about the likely location of the true population mean. 

 It does not tell you the probability that the true mean will be between the estimated confidence 

limits. 

This is perhaps the most common misunderstanding regarding CIs. The interval describes the 

uncertainty associated with the sampling method, not the parameter. For example, let’s assume that 

under a particular scenario (run) the true population mean of MWS handoff time is 400ms. Figure 3 

shows 95% confidence intervals for 100 samples (20 observations per sample) of the MWS handoff time 

(vertical lines). The black horizontal line represents the true population mean handoff time. You can see 

that 96 of 100 (approx. 95%) samples yield confidence intervals that cover the true population mean of 

400ms. The four red lines indicate samples where the estimated CI did not cover the true population 

mean. 

 

Figure 3: 95% confidence intervals for 100 samples (𝒏 = 𝟐𝟎) from the population of MWS handoff 

times 

We cannot ever know whether the interval we calculate is one of the intervals that contains the true 

value of the parameter or one of the intervals that does not. 

 CIs do not allow you to predict future sample points from the population. 

Confidence intervals take into account the variation in the estimation (sampling error) but not in the 

response (standard deviation). In the next section, we cover prediction intervals which do encompass 

the variation in the estimation and in the response, thus allowing us to predict future sample points. 

 CIs do not tell you that a certain percentage of the population is between your limits. 



STAT COE-Report-04-2015 

 
 

 
Page 9 

 
  

Again, because the confidence interval does not encompass the variation in the response, we cannot 

determine if 90%, 95%, etc. of the population will fall below a threshold specification (e.g. 500ms). Later 

in this paper, we introduce tolerance intervals which will allow us to do just that.  

 The more data in your sample, the smaller your confidence interval is for the stated parameters. 

As you increase the sample size, the sampling error decreases. If we were to sample the entire 

population, the sampling error would be zero and we would know the true mean of the system under 

test. Thus taking larger samples gives us a sampling error closer to zero, which narrows the confidence 

interval calculated. 

Prediction intervals 

Definition 

A prediction interval (PI) is an estimated range of values in which future observations will fall at a 

specified level given what has already been observed. In layman’s term, a PI gives you a range of values 

you can expect the response at a future tested or untested scenario. PIs are often used in regression 

analysis, where the intent could be to create an empirical model that will interpolate within the design 

space and estimate untested scenarios (i.e., settings of factors).  

Questions 

A sample question that may require the calculation of a prediction interval is: 

 What is the expected (predicted) performance of my system at a specific condition? 

Case Study 

PIs encompass both the variation in the estimation and in the response. Therefore, PIs tend to be wider 

than confidence intervals. Table 3 shows the results for the MWS case study with a new column of the 

95% prediction intervals. You can see runs 4, 8, and 12 all have a value greater than 500ms (highlighted 

in red in Table 3). These results suggest that while the true mean could be under 500ms at run 8, the 

response variation can lead us to see values that exceed 500ms.  
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Table 3: Calculated upper prediction intervals for MWS designed experiment. 

 

Things to note 

 Prediction intervals assume normality 

If the data collected does not follow the normal distribution, the interval reported is not appropriate. 

Diagnostic plots and tests for normality should be conducted to ensure this assumption is not violated. If 

there is a violation of normality, a transformation of the response could be employed such that the 

transformed response is normal. However, interpretation of results can be difficult (since it is on a 

transformed scaled and not in the real-world scale) and the PIs can be inflated (Perry, 2015). 

Tolerance Intervals 

Definition  

A tolerance interval is a statistical interval within which, with some confidence level, a specified 

proportion of the population falls. In layman’s terms, a tolerance interval will give you a range of values 
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where X% (specified by the user) of the population should fall. Tolerance intervals are not as well-known 

compared to prediction and confidence intervals and have been underutilized in DoD testing (Rucker, 

2014). 

Questions 

A sample question that may require the calculation of a tolerance interval: 

 Will 99% of my observations fall under the threshold specification at least 95% of the time? 

Case Study 

A column for the 95% confidence/99% tolerance intervals for MWS case study data has been added in 

Table 4. You can see that now run 16 has a value greater than 500ms.  

Table 4: Calculated upper tolerance intervals for MWS designed experiment. 

 

We can assume that runs 4, 8, 12, and 16 fail to meet our requirement that the probability of success 

(𝑃𝑆) is at least 99%. Note that neither the CI nor the PI calculations were able to address this 

requirement directly. The TI is the only interval that tells us what scenario will result in failures more 
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than 1% of the time. However, the TI does not provide an estimate for 𝑃𝑆. In order to get an estimate for 

𝑃𝑆, the inverse of the TI needs to be found as shown in Table 5. 

Table 5: Calculated upper bound for 
s

P  for MWS designed experiment. 

 

A column for the upper bound of 𝑃𝑆 for MWS case study data has been added in table 5. You can see 

that for runs 4, 8, and 12 we fail to meet the spec by a large margin and run 16 fails as well although by a 

smaller margin  

Things to note 

 More sensitive to normality assumption violation. 

Like the PI, the TI also requires that the data be normal distributed. However, if diagnostic plots and a 

test for normality indicates this assumption has been violated, a transformation of the response is not 

recommended. Rather, a distribution-free (nonparametric) calculation of a tolerance interval should be 

employed (see Natrella [1963] for details). 

Conclusion 
 
This best practice has demonstrated how to use three statistical intervals in conjunction with design of 

experiments and regression analysis to address the underlying questions behind testing. The 
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combination of these tools allows programs to assess a system’s performance with greater rigor than 

the general practice of reporting a single average of a system’s performance across all test conditions. 

Design of experiments helps define the operational space and helps determines which scenarios 

(settings of the input factors) should be run that would best aid the analysis. Regression analysis allows 

us to build an empirical model that informs us which input factor or combination of input factors 

influences performance and by how much. The empirical model created with regression analysis can be 

used to predict performance for future untested scenarios.  

Statistical intervals help quantify the level of uncertainty in our system performance estimates. The 

appropriate statistical interval to use is dependent on the question that is being asked. Tolerance 

intervals are perhaps the best suited for many DoD applications but are currently underutilized in the 

T&E community. The end results from testing and analysis must aid senior leaders (the decision makers). 

The combined use of these tools provides a rigorous examination of a system’s performance to achieve 

just that. 
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